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Introduction

Shoulder pain is a common disabling complaint in general 
medical practice whereby rotator cuff calcific tendinopathy is an 
upfront diagnosis during the ultrasound (US) examination.[1‑3] 
Since B‑mode US is regarded as an excellent imaging tool 
to visualize calcifications within the rotator cuff tendons,[4,5] 
it is effectively used to help physicians rationalize the 
treatment in patients with shoulder pain.[6] However, US is 
an operator‑dependent imaging modality and requires much 
training/practice to reach a sufficient level of diagnostic 
accuracy.[7,8] While interobserver agreement is good among 
experienced physicians, poor agreement is documented when 
US findings are interpreted by less experienced physicians.[9,10]

To this end, for supporting the decision‑making process, 
computer‑aided diagnosis has been developed in recent 
years. Machine learning  (ML) is a part of the broad field 

of artificial intelligence (AI) and involves systems that aim 
to construct algorithms which can learn from and make 
predictions on data.[11] Deep learning  (DL), a subclass of 
methods in the broader field of ML, is a particularly powerful 
tool for extracting nonlinear features from data. Among DL 
approaches, convolutional neural networks  (CNNs) are the 
most commonly used ones in the field of medical image 
analysis.[12] CNN – particularly promising in US – is designed 
to extract highly representative image features in a fully 
automatic manner where predictable acoustic features are 
typically neither obvious nor easily handcrafted.[13]

The unique challenges associated with the application of DL 
in US are the shortage of images and the expertise required for 
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their acquisition.[14] US has the inherent limitations of inter‑ and 
intra‑observer variability, which result in discrepancies 
between the operators in terms of image acquisition and 
interpretation.[15,16] A sufficient number of US images of 
adequate quality is required for establishing a DL algorithm 
having high accuracy. In most previously published articles 
using DL, the number of US images was <300.[13,17]

Our center is one of the largest musculoskeletal (MSK) US 
centers in Taiwan whereby services to a large population are 
provided and a strict long‑term US image storage process is 
maintained. All sonographers in our center are trained with 
high standards in the same system, and we have an internal 
review process for image quality and diagnostic accuracy. 
Accordingly, a large number of normal and abnormal 
high‑quality MSK US images have been accumulated, i.e., 
adequate for DL development. Given all the aforementioned 
issues, in this study, we aimed to evaluate the feasibility of 
CNN‑based DL algorithms to dichotomize shoulder US images 
with or without supraspinatus calcific tendinopathy (SSCT).

Materials and Methods

Data acquisition
Institutional review board approval was obtained for this 
retrospective study (approval number: 201910110RIND), and 
the requirement for informed consent for the review of patient 
images and medical records was waived. All the examinations 
had been performed by a team of 18 physiatrists  (with 
3–20 years of experience) who had successfully passed the 
board examination following an MSK US training program. 
Some of these examiners have been editors and authors of 
several MSK US textbooks and some others have been entitled 
as “Registered in Musculoskeletal® sonography” or “Certified 
Interventional Pain Sonologist” certifications by the World 
Institute of Pain. To ensure the heterogeneity of the images for 
generalizability of this model, US images in the dataset had 
been obtained from different examiners using various machines 
including Noblus (Hitachi, Japan), Acuson S2000 (Siemens, 
Germany), Xario Model SSA‑660A  (Toshiba, Japan), and 
Aplio 500 (Canon, Japan).

133,619 US images from 7836 consecutive patients who had 
undergone shoulder US examinations in our MSK US Center 
between January 2017 and December 2019 were collected. In 
our country, the National Health Insurance covers examination 
fees, and therefore, the referral criteria were relatively liberal. 
The enrolled patients had been referred for US examinations 
due to neck and shoulder pain and a standard protocol had 
been applied to all of them.[18] Only images with longitudinal 
or transverse views of the supraspinatus tendons (SST) were 
included for further labeling, whereas those with Doppler US 
were excluded. In clinical practice, Doppler US image was 
recorded when there was a high suspicion of abnormality. We 
excluded these images to prevent the model from “learning” this 
feature to recognize abnormal images. We aimed to train this 
model solely based on B‑mode images. The number of images of 

SST in the longitudinal view was 7165 (2222 with calcification 
and 4943 without) and the number of images in the transverse 
view was 5201 (1178 with calcification and 4023 without).

During the labeling process, two physiatrists with 6‑  and 
10‑year experience in MSK US independently classified the 
images as with or without SSCT. An image was classified as 
“with SSCT” when hyper echoic lesions (regardless of their 
shape, size, or number) with or without acoustic shadowing 
within the SST were present.[4] The concomitant presence 
or absence of other findings, such as subdeltoid bursitis, 
SST tear, or tendinitis, did not contribute to the annotation. 
If inconsistencies existed between the two physiatrists, a 
consensus was reached through discussion. If a consensus 
could not be reached, the image was excluded to ensure quality 
of the training data.

Data pre‑processing
A total of 12366 US images underwent deidentification to 
secure patients’ personal information. Before submitting 
the images for model training, each image was cropped to 
remove patient identifications, machine settings, annotations, 
and scales. Only original US images without any annotations 
were included in the dataset; US images with annotations that 
represent the position of calcification labeled by the original 
sonographers were excluded. The number of cases with and 
without calcification in the longitudinal view of the SST 
without labels was 780 and 3784, respectively. Those in the 
transverse view of the SST without labels were 451 and 2822, 
respectively. Figure 1 shows the flow chart of data acquisition 

Figure  1: Flow chart of data acquisition and pre‑processing.  (US: 
ultrasound; MSK: musculoskeletal; SST: supraspinatus tendon)
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and pre‑processing. Table 1 gives the training, validation, and 
testing datasets as regards the US images. Three models, i.e., 
the longitudinal, transverse, and longi‑trans models, were 
trained and tested with these different datasets. The longitudinal 
model was trained with only the longitudinal views of the 
SST images, the transverse model with only the transverse 
views of the SST images, and the longitrans model with all 
the SST images.

Data augmentation
Data augmentation was used to diversify US images to 
decrease the impact of their shortage. All data in the training 
process were randomly rotated from 0° to 40° to imitate the 
variation of the position between the SST of each patient. The 
width shift, height shift, shear, and zoom were randomly set 
from 0 to 0.20 to imitate the variation originating from the 
personal variability between physicians. In addition, a channel 
shift of 10 was used to imitate the color variation between 
different brands of US machines, and a horizontal flip was 
used to imitate the variation between different medial/lateral 
orientations of images.

Model architecture and training
Among all the pretrained networks in the CNN, the models 
considered in this study were trained with DenseNet‑121, 
which was trained using Image Net, i.e., a dataset containing 
more than 14 million images over 20,000 classes. The structure 
of DenseNet‑121 was shown in Figure 2. To fit the case in our 
study, the original top fully connected layer of DenseNet‑121 
was replaced by two classes for the transverse model, the 
longitudinal model, and four classes for the longi‑trans model 

as its dense layers. A  softmax nonlinearity was followed 
to show the predicted probability of each class. To avoid 
overfitting in the models, a dropout layer was used while 
developing the models. Half of the hidden neurons in the 
network were randomly deleted when the dropout rate was 
set to 0.50, and the amount of the input and output neurons 
were simultaneously kept in each batch. Adam was used as an 
optimizer with a learning rate of 10 − 5. Its low memory usage, 
good computing performance, and the ability to handle noise 
samples and sparse gradient improve the training process in 
the models. In addition, categorical cross‑entropy was used as 
the loss function to determine the residual between the ground 
truth and prediction. To eliminate the effect of imbalanced data 
between different classes in the longitrans model, the class 
weight was automatically adjusted. Three final models with 
the lowest validation loss were selected in different datasets 
after 300 epochs. Common pretrained networks in classifying 
medical imaging such as ResNet50 and VGG19 were used 
to evidence the performance of our model developed with 
DenseNet‑121.

Evaluation index
We used the testing accuracy, sensitivity, and specificity 
calculated from the confusion matrix to evaluate the models. 
SST with and without calcification is represented by the positive 
and negative signs in the confusion matrix, respectively. Of 
note, the gold standard of diagnosing SSTs with and without 
calcification involved a consensus between the two experts.

The receiver operating characteristic (ROC) curve was also 
used as an evaluation index, which is a graphical plot highly 

Table 1: Distribution of training, validation, and testing datasets in the different models  (n)

Longitudinal model Transverse model Longi‑trans model Testing dataset

Training 
dataset

Validation 
dataset

Training 
dataset

Validation 
dataset

Training 
dataset

Validation 
dataset

Testing 
dataset (a)

Testing 
dataset (b)

Testing 
dataset (c)

All 1200 100 720 62 1920 162 260 120 380
Cal (+), L 600 50 0 0 600 50 130 0 130
Cal (−), L 600 50 0 0 600 50 130 0 130
Cal (+), T 0 0 360 31 360 31 0 60 60
Cal (−), T 0 0 360 31 360 31 0 60 60
All: Total number of ultrasound images, Cal (+): Calcification present, Cal (−): Calcification absent, L: Longitudinal view of supraspinatus tendons, T: 
Transverse view of supraspinatus tendons

Figure 2: The segmentation frame diagram for the pretrained model, DenseNet‑121
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correlated with the confusion matrix. The false‑positive rate 
and true positive rate with the threshold change were plotted 
as ROC curves. The more the ROC curve skewed to the upper 
left side of the coordinate chart, the better the model. When 
the area under the ROC curve area under the curve (AUC) 
is > 0.90, 0.80–0.90, and 0.70–0.80, the model has outstanding, 
excellent, and acceptable discrimination, respectively. 
However, models with AUC <0.50 have no discrimination.[19]

The decision‑making process of ML is called into question 
due to the “black boxes” which usually represent data that go 
in and results that go out without the master of the process for 
human. To open the black boxes and obtain approval from a 
human being, heatmaps were used in ML to visualize what the 
model “saw” in the input images. Heatmaps are types of data 
visualization tools that depict data using different colors in two 
dimensions. In this study, Gradient‑weighted Class Activation 
Mapping[20] was used to plot heatmaps. It calculates weights 
through back propagation and multiplies weights with feature 
maps to gain the importance of regions in the last convolutional 
layer of the CNN.

Results

Figure  3a and b show the accuracy and loss curves of the 
longitudinal model, respectively. The training and validation 
accuracies of the longitudinal model were 99.50% and 96.88%, 
respectively. Its training and validation losses were 0.01 and 
0.13 at epoch 257, respectively. For the transverse model, the 
training and validation accuracies were 99.86% and 94.64%, 
respectively. Its training and validation losses at epoch 339 

were 0.01 and 0.20, respectively. Figure 3c and d show the 
accuracy and loss curves of the transverse model. For the 
longi‑trans model, the training and validation accuracies were 
96.72% and 90.62%, respectively. The training and validation 
losses at epoch 313 were 0.03 and 0.41, respectively. Its 
accuracy and loss curves are shown in Figure 3e and f.

Figure 4a is the testing accuracy of the three models developed 
with DenseNet‑121 against different testing datasets. The 
testing accuracy of the longitudinal model testing against the 
longitudinal view of SST was 92.31%. The testing accuracy 
of the transverse model testing against the transverse view of 
SST was 89.17%. Herewith, these models had lower testing 
accuracies when they were tested against an untrained view 
of SST, i.e., 78.33% for the longitudinal model tested against 
the transverse view of SST and 69.23% for the transverse 
model tested against the longitudinal view of SST. Further, 
the longitrans model performed better based on its testing 
accuracies, which were 91.54% for the longitudinal view of 
SST and 90.83% for the transverse view of SST. As such, 
models trained on the longitudinal and transverse views of 
SST had a more accurate diagnosis, although models trained 
on single views of SST also had the ability to a certain extent. 
Moreover, multiple views of SST improved the quantity/
richness of input data rather than confusing the diagnostic 
criteria of the models.

Figure 4b shows the sensitivity of the three models developed 
with DenseNet‑121 against different testing datasets. No 
obvious difference was found in their sensitivities, which 
were approximately 83% to 89%. However, their specificity 
did not show the same findings, i.e., specificity against trained 
views of SST was approximately 95% among the three 
models  [Figure 4c]. On the contrary, the specificity against 
untrained views of SST was 25% to 45% lower than that of 
the trained views of SST.

Related comparison in models developed with ResNet50 and 
VGG19 are shown in Figure 4d‑i. Even though some of the index 
such as the testing accuracy of transverse model developed with 
ResNet50 against the longi‑trans testing dataset was higher than 
that of model developed with DenseNet‑121, its corresponding 
sensitivity did not show in the same way. Moreover, models 
developed with DenseNet‑121 presented the highest composition 
of testing accuracy, sensitivity, and specificity between the 
three ML pretrained models. Therefore, models developed with 
DenseNet‑121 were analysed in the further step.

The AUCs of the longitudinal model testing against testing 
datasets (a), (b), and (c) were 0.95, 0.89, and 0.93, respectively. 
The AUCs of the transverse model tested against different 
testing datasets were 0.80, 0.93, and 0.84. The AUCs of the 
longi‑trans model against the three testing datasets were 0.95, 
0.94, and 0.95.

Figure 5 shows the heatmaps for different views of the SST 
with or without calcification. All the heatmaps indicated 
that the occurrence or non‑occurrence of calcification in the 

Figure 3: Learning curve of the different models with their accuracy and 
loss. (a) Accuracy curve of the longitudinal model; (b) Loss curve of the 
longitudinal model; (c) Accuracy curve of the transverse model; (d) Loss 
curve of the transverse model;  (e) Accuracy curve of the longi‑trans 
model; (f) Loss curve of the longi‑trans model
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SST was a key parameter for the algorithm to determine the 
existence of SSCT. Moreover, whether the view of the SST 
was longitudinal or transverse did not affect the algorithm 
results. Figure 6 shows several examples of US images that 
were correctly and incorrectly classified by the algorithm.

Discussion

In this study, we tried to develop a DL algorithm that can 
detect SSCT on US images. Among the three models trained 
on different views of SST, the longi‑trans model trained with 
the longitudinal and transverse views of SST had a better 
performance in diagnosing the existence of SSCT. Although 
the accuracy and loss of the longitrans model during the 
training and validation stages were worse than those of the 
longitudinal and transverse models, its performance against 
unseen testing data was more credible and much better than 
that of the other two models, especially when simultaneously 
diagnosing the longitudinal and transverse views of SSCT. 
In practice, it is not convenient and often not possible to use 
only one view of SST to diagnose SSCT. Therefore, the ability 
to diagnose the longitudinal and transverse views of SSCT 
is indispensable. The longi‑trans model tested on more than 
300 images was proven to correctly diagnose the existence 
of calcification, not only in the longitudinal but also in the 
transverse view of SST.

Comparing the performance of our longitrans model to the 
other four applications of ML in US images, the longi‑trans 
model seems to have a much better performance. In the 
pertinent literature, a model used for the segmentation and 

Figure 5: Heatmaps for the supraspinatus tendon. Longitudinal view of the 
supraspinatus tendon (a) with calcification and (b) without calcification. 
Transverse view of the supraspinatus tendon  (c) with calcification 
and (d) without calcification

dc

ba

Figure 4: Evaluation indices of three models developed with three pre‑trained models against different testing datasets (L: longitudinal view of supraspinatus 
tendons, N = 260; T: transverse view of supraspinatus tendons, N = 120; LT: combination of the above two datasets, N = 380). (a-c)Testing accuracy, 
sensitivity, specificity of models developed with DenseNet121. (d-f) Testing accuracy, sensitivity, specificity of models developed with ResNet50. 
(g-i) Testing accuracy, sensitivity, specificity of models developed with VGG19
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classification of breast lesions was initially developed with 
80.42% accuracy.[21] Second, a model classifying diffuse liver 
diseases was developed with 82.6% accuracy.[22] Thereafter, 
Guo and Du[23] developed a model for the classification of 
thyroid US standard planes and it had an accuracy of 83.88%. 
In addition, the model for the classification of breast cancer 
US images was developed with 88% accuracy.[24] In short, 
our longi‑trans model outperforms other ML applications 
concerning US images.

It is noteworthy that US is an operator‑dependent imaging 
modality, and variable interoperator agreements have been 
observed even among experienced sonographers.[9,10] For 
those who have little experience in diagnosing SSCT, a 
computer‑aided diagnostic tool may help/improve the diagnosis. 
In the near future, these algorithms may analyze – either in 
real time or very shortly after data extraction – the US images 
generated by clinicians or technologists and assist them in 
performing accurate diagnoses. Needless to say, this would 
make US an even‑more attractive first‑line imaging modality, 
as long as the images generated are standardized to a certain 
level.

As another clinical implication of this algorithm, SSCT can 
be applied to augment medical education. In medical students, 
Cheng et  al.[25] reported that AI‑assisted learning helps in 
achieving a significantly higher diagnostic accuracy of hip 
fractures on pelvic radiographs as compared to those who 
undergo conventional training. Although it was not the primary 
aim of our study, we believe that an increase in the diagnostic 
accuracy of this CNN‑based DL algorithm can enable its 
application to the design of training software that, for example, 
can be incorporated in commercialized US machines.

Our study has several limitations. First, it was a retrospective 
study conducted in a single institution and this might limit 
the generalizability of its results. All examiners followed a 
standard protocol for scanning, but different physiatrists used 
different US machines and machine settings. Moreover, while 
rising the amount of US images through the data augmentation 
step, the fixed parameters may not rise the generalizability 

of increased data used in model building. We believe that 
the results, to a certain extent, revealed relevant ‘real‑world’ 
heterogeneity, which was highly important for training a DL 
algorithm.[26] One future research direction would be to verify 
the diagnostic accuracy of this algorithm using a test dataset 
obtained also from other US centers. Second, it is important to 
note that we did not consider the morphologic characteristics 
of the calcific deposits e. g. size, shape, and echogenicity. One 
inherent limitation of applying DL in US is the shortage of 
US images. Although US images were increased through data 
augmentation step before model building, the data increased 
by the fixed parameters could hardly replace the real ones. To 
perform subgroup analysis, the number of images for each 
subgroup of calcific deposits should be sufficient to divide 
into training and validation set with representative amount 
which avoids models from overfitting. Pooling together 
US images with all types of calcific deposits would yield a 
significant amount of heterogeneity. Third, no radiographic 
correlation was performed in this study. Nonetheless, US is 
a well‑established tool for the diagnosis of SSCTs[4,27,28] and, 
in our hospital, patients with shoulder pain are not routinely 
referred to take plain films, partly due to the fear of radiation. 
Moreover, since this study involved retrospective image 
analyses, it would be unethical  (and quite impossible) to 
perform shoulder radiography in the study population. Fourth, 
this model only classified US images as “with calcification” 
and “without calcification.” There was no information 
regarding whether other abnormalities‑such as SST tears, 
tendinosis or tendinitis and sub acromial bursitis‑existed in 
those images. A future model may be developed to perform 
multiclass classifications. For example, the model can classify 
one image as SST tear with SSCT, and another as sub acromial 
bursitis with SSCT.

Conclusion

The longi‑trans model‑developed with a CNN‑based DL 
algorithm‑was better for the diagnosis of SSCT than the 
longitudinal and transverse models, with an accuracy of 
91.32%, sensitivity of 87.89%, and specificity of 94.74%. Our 

Figure 6: Correctly and incorrectly classified examples of ultrasound images. Longitudinal  (upper row) and transverse  (lower row) views of the 
supraspinatus tendon
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results seem to be promising for the clinical application of DL 
algorithms to establish diagnoses based on MSK US images.
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